
Journal of Engineering Physics and Thermophysics, 'JoL 69, No. 5, 1996 

V A P O R - B U B B L E  G R O W T H  IN A S U P E R H E A T E D  

P O L Y M E R  S O L U T I O N  

S. L. Chetvertakova, O. R. Dornyak, and 
S. P. Levitskii 

UDC 536.24 

Vapor-bubble growth tn a superheated polymer solution is studied. Superheating is achieved by a pressure 

drop at the initial t ime instant. The process is numerically analyzed on the basis o f  a model  allowing for  the 

format ion o f  a thin surface layer with an elevated concentration of  polymer around the bubble. 

The use of polymer liquids in the heat treatment of metals, in thermal power plants, and in cooling systems 

stimulates interest in the theoretical investigation of boiling processes in binary polymer-solvent systems. A central 

part in these investigations, as well as for low-molecular liquids [1 ], is occupied by the study of the processes of 

interphase interaction at the level of individual bubbles. 

~,, [2] the growth and collapse of a spherical cavity in a polymer liquid are studied with alL. ,ance for 

rheological effects only, and in [3] small-amplitude pulsations of vapor bubbles in solutions of high-molecular 

compounds are analyzed without allowance for diffusion phenomena in the liquid phase. The growth of vapor 

bubbles in a binary solution of low-molecular liquids was studied in [4 1. Outburst boiling-up of highly superheated 

macromolecular systems was experimentally studied in [5, 6 I. In the present paper we consider the nonlinear 

problem of the growth of a vapor cavity in a superheated polymer fluid on the basis of a model that allows for both 

heal and mass transfer and rheological effects in the liquid phase. The evolution of a bubble is considered within 

the framework of a spherically symmetric scheme. The parameters  inside the inclusion are assumed to be 

homogeneous and independent of the spatial coordinate [4 ]. 

Within the framework of the assumptions adopted, the equations of state and of the change in the mass of 
the vapor phase have the form 

P l B T  
P~ - u ' (1) 

R . -Sp~ + ko~ = J .  ~2) 

Interphase heat and mass exchange is determined by translz~rt processes in the liquid phase, to describe 

which we use the equations of heat conduction and diffusion: 
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form 

The boundary  conditions on the phase interface and at a distance from the bubble can be written in the 

(T2) R = T 1 = T s(p,kR); 

(I - kg) J = p2 D ~r R 

R (s) 

; (T2) | = r 0 ;  (k),= = k 0 . 

To describe the dependences of saturation temperature above the solution on pressure and concentration 

we use the F lo r i -Hugg ins  equation obtained within the framework of the thermodynamic theory of solutions of 

flexible-chain polymers [7 ] 

P = , o l e x p [ l _ ~ o l  + Z ( I  _~o l )2 ] ;  ,pl =kR [kR+(1 _kR) Kp] -1. (6) 

In selecting a rheological model to describe the behavior of the carrying phase one should take into account 

the fact that radial flows originating in oscillations of inclusions in a polymer medium refer to elongational ones. 

Due to this, the coincidence of the character of the dependence of longitudinal viscosity, predicted by the model, 

on the rate of longitudinal deformation should be one of the criteria of such a selection. To qualitatively analyze 

the effect of the factor of rheological nonlinearity on the dynamics of bubbles in a polymer medium one can use 

the following equation with one relaxation time [8 ]: 

r = r 0 ) + r ( 2 ) ;  r ( ? ) = 2 r / ( l  - f l )  e ;  r 0 ) + ) ,  [ ~ - a ( r  ( . e + e . r  0))  =2r / f ie .  

Here fl characterizes the contribution of the Maxwellian element to the effective viscosity of the medium, 

and the parameter  1 /2  _< a _< 1 controls the effect of nonlinear terms. In derivation of the Rayleigh equation one 

assumes that during the growth of a vapor bubble, due to intense evaporation of the solvent, a thin layer of fluid 

with an elevated polymer concentration forms around the inclusion. Since the layer thickness is very small, it can 

be assumed that the components  of the stress tensor are approximately equal to the mean value. The contribution 

to the generalized Rayleigh equation of stresses arising inside a diffusion boundary layer is allowed for within the 

framework of a linear approximation over e. The contribution of fluid rheology beyond the limits of the surface 

layer is found to be similar to [8 ]. As a result we have 

P2 R J ~ + ~  + P 2 ( ~ 1 7 6  + ~ = S ;  

S = S (1) + S (2) + S (3); S (2) = - 4r/(1 - f l )  RR -1 ; 

t [~_J_l R6a(~) -R6a( t )  x 
S ( l ) -  243)7 f exp R3 R3 

~ R  ~ (t) o (~) (0 

x R 2(I -'~) (~) J~ (~j) d~ ; (7) 
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Fig. 1. The  growth of vapor-bubble  radius  as a function of time. R0 = 10 - s  

m, P0 = 105 Pa, ko = 0.9: 1) Pl = 0.8.105 Pa; 2) 0 . 6  105 . t, sec. 

Fig. 2. Change  in the relat ive concen t ra t ion  of solvent on the inclusion 

surface. For the notation see Fig. 1. 

The  terms S tl> and S ~3>, which character ize  the effect of the non-Newtonian  p a n  of the s tress  tensor  on 

the bubble evolution, can be de te rmined  from a sys tem of f i r s t -order  different ial  equat ions for the boundary, values 

of the coefficient a ,  thus making it possible to cons iderab ly  simplify the calculation. In part icular ,  at a = 1/2 we 

obtain the equations 

S(I) + S(3) = Ll + ~ ( r l 0 -  r 2 0 -  LI + /-'2); L! + LI + = - 2R ; 

To perform calculat ions one should first de te rmine  the values of physical  pa ramete r s  character iz ing the 

l iquid-bubble  system.  The  time of fluid re laxat ion  was es t imated on the basis of the K a r g i n - S l o n i m s k i i - R a u z  

molecular-kinet ic  theory [9] by the formula 

0.608 (r/sol - r/s) M = (8 )  
cBT 

To descr ibe  the dependence  of the solution viscosity on the polymer concentra t ion  the Martin empirical  

equation can be used, which is valid for many polymers  within a wide range of concentra t ions  [7 ]: 

r/sot 
- 1 + 3"exp(km"~ );  3"= c [r/l = cKM ~. (9) 

r/s 

The  influence of the liquid tempera ture  on the theological  parameters  of the sys tem was taken into account 

within the f ramework of the theory of viscous flow, according to which 

r/so~ ; r/~o~0exp ~ B r 0  - I ; r / s =  r/~0e• B ~ 0  - 1 , (10)  

and the principle of the t empera tu re - f requency  superposi t ion 19 ]. For the coefficient of b inary  diffusion,  the 

approximat ion of [10l  was used, which ra ther  accurately descr ibed the exper imenta l ly  found dependence  of the 

constant  of diffusion t ransfe r  on tempera ture  and concentrat ion for a solution of po lys tyrene  in toluene. 

System of equations (1)-(10) can be solved only numerically.  Difference equations were const ructed by the 

in tegro- in terpola t ion  method  with the liquid a round  the bubble being divided to spherical  layers .  The  variable  ~ = 

r /R ( t ) ,  which "freezes" the movable boundary  of phase t ransi t ion,  was used. Numerical  calculat ions were per formed 

for the example  of a di lute  solution of polys tyrene  in toluene, which is a good organic solvent for many  polymers .  

In Fig. 1 the r a d i u s - t i m e  dependence  for various superheat ings  due to a pressure  drop  at the initial  t ime 

instant  is shown. The  da shed  curve i l lustrates the behavior of a vapor bubble in toluene under  condi t ions  s imilar  

to those of curve 1. It is seen that  the introduct ion of a small  amount  of polymer  to the liquid does  not lead to a 
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Fig. 3. The solution viscosity at the vapor bubble boundary as a function of 

time. For the notation see Fig. 1. 

considerable decrease in the rate of vapor-bubble growth. This occurs thanks to the presence of a nearly horizontal 

plateau on the curve of liquid-vapor phase equilibrium in the coordinates T, k in the range of small polymer 

concentrations [ 11 1. 

The dependence of the solvent concentration at the bubble boundary on time is shown in Fig. 2. In the 

case of insufficient superheating and, correspondingly, of a smooth increase in the radius of the inclusion, the drop 

in concentration at the boundary is monotonic. In the opposite case, diffusion transport does not compensate for 

the intense evaporation of solvent from the solution, and at the initial stage of the process there is a considerable 

decrease in k. Then, due to the retardation of bubble growth, the balance between solvent evaporation and entry 

from the volume is restored, and the surface polymer concentration reaches an asymptotic value corresponding to 

the self-similar solution of the problem at (t--, oo) [11 ] 

- ; R = h ~ ;  A T .  = T 2 0 -  T s(kO); aT .  l -  c2l -~ (1 - ~R) r  ~,-ffJk=~ 

h =  ~/12az, n-1 Ja ;  J a > > l .  

The calculated curves in Fig. 3 show the correspondence between the changes in concentration and viscosity 

of the solution on the inclusion surface. As is seen, during the growth of a vapor bubble in a superheated solution, 

a thin layer with a high content of polymer is formed around it, thus explaining some experimentally found effects, 

viz., the stabilization of a spherical shape and the reduced tendency of bubbles to coalesce in boiling solutions of 

macromolecules [ 12, 13 ]. 

Calculations similar to those considered above were also performed for concentrated systems at ko -0 .5 .  

In these systems, the phenomenon of diffusional retardation of bubble growth is much stronger than in dilute 

solutions. At the same time, the manifestation of relaxation properties of liquid weakens, to a great extent, 

dissipative losses caused by the growth in the non-Newtonian viscosity of the liquid for large polymer contents. 

The work was carried out under grant No. 95-02-06073 of the Russian Foundation for Fundamental Re- 

search. 

N O T A T I O N  

p, pressure; B, universal gas constant; T, temperature; M, relative molecular mass of polymer; R, bubble 

radius; p, density; J, rate of phase transitions; k, concentration of solvent; D, coefficient of binary diffusion; 22, 

thermal conductivity; a2, thermal diffusivity; l, specific heat of vapor generation; v, velocity; ~, pressure of saturated 

vapors above a pure solvent; ~o~, volumetric concentration of a volatile component; •, Flori-Huggins parameter; 

Kp, ralio of specific volumes of polymer and solvent; ~., relaxation time; r/, solution viscosity; e, ratio of diffusion- 

layer thickness to bubble radius; a, surface tension coefficient; z and e, lensors of excess stress and deformation 

rate; rio and r20, radial and tangential components of stress tensor at the bubble boundary; c, concentration of 

polymer in the solution; kin, Marlin constant; K and y, constants for given solvent and temperature within a certain 
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range of change in molecular mass; E, activation energy of viscous flow; :, Lewis number for liquid phase; Ja, 
Jacobs number; c2, specific isobaric heat capacity of solution; D/Dt, Jaumann derivative. Subscripts: 1, 2, 
correspond to vapor and liquid phases; sol and s, solution and solvent; 0, initial state of the system; R, the value 
at the bubble boundary. 
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